ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.07887
24
63

Hierarchical Macro Strategy Model for MOBA Game AI

19 December 2018
Bin Wu
Qiang Fu
Jing Liang
Peng-fei Qu
Xiaoqian Li
Liang Wang
Wei Liu
Wei Yang
Yongsheng Liu
ArXivPDFHTML
Abstract

The next challenge of game AI lies in Real Time Strategy (RTS) games. RTS games provide partially observable gaming environments, where agents interact with one another in an action space much larger than that of GO. Mastering RTS games requires both strong macro strategies and delicate micro level execution. Recently, great progress has been made in micro level execution, while complete solutions for macro strategies are still lacking. In this paper, we propose a novel learning-based Hierarchical Macro Strategy model for mastering MOBA games, a sub-genre of RTS games. Trained by the Hierarchical Macro Strategy model, agents explicitly make macro strategy decisions and further guide their micro level execution. Moreover, each of the agents makes independent strategy decisions, while simultaneously communicating with the allies through leveraging a novel imitated cross-agent communication mechanism. We perform comprehensive evaluations on a popular 5v5 Multiplayer Online Battle Arena (MOBA) game. Our 5-AI team achieves a 48% winning rate against human player teams which are ranked top 1% in the player ranking system.

View on arXiv
Comments on this paper