ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08113
15
3
v1v2v3 (latest)

On The Chain Rule Optimal Transport Distance

19 December 2018
Frank Nielsen
Ke Sun
    OT
ArXiv (abs)PDFHTML
Abstract

We define a novel class of distances between statistical multivariate distributions by modeling an optimal transport problem on their marginals with respect to a ground distance defined on their conditionals. These new distances are metrics whenever the ground distance between the marginals is a metric, generalize both the Wasserstein distances between discrete measures and a recently introduced metric distance between statistical mixtures, and provide an upper bound for jointly convex distances between statistical mixtures. By entropic regularization of the optimal transport, we obtain a fast differentiable Sinkhorn-type distance. We experimentally evaluate our new family of distances by quantifying the upper bounds of several jointly convex distances between statistical mixtures, and by proposing a novel efficient method to learn Gaussian mixture models (GMMs) by simplifying kernel density estimators with respect to our distance. Our GMM learning technique experimentally improves significantly over the EM implementation of {\tt sklearn} on the {\tt MNIST} and {\tt Fashion MNIST} datasets.

View on arXiv
Comments on this paper