ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.09869
41
4
v1v2 (latest)

bigMap: Big Data Mapping with Parallelized t-SNE

24 December 2018
Joan Garriga
F. Bartumeus
ArXiv (abs)PDFHTML
Abstract

We introduce an improved unsupervised clustering protocol specially suited for large-scale structured data. The protocol follows three steps: a dimensionality reduction of the data, a density estimation over the low dimensional representation of the data, and a final segmentation of the density landscape. For the dimensionality reduction step we introduce a parallelized implementation of the well-known t-Stochastic Neighbouring Embedding (t-SNE) algorithm that significantly alleviates some inherent limitations, while improving its suitability for large datasets. We also introduce a new adaptive Kernel Density Estimation particularly coupled with the t-SNE framework in order to get accurate density estimates out of the embedded data, and a variant of the rainfalling watershed algorithm to identify clusters within the density landscape. The whole mapping protocol is wrapped in the bigMap R package, together with visualization and analysis tools to ease the qualitative and quantitative assessment of the clustering.

View on arXiv
Comments on this paper