ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.00838
357
106
v1v2 (latest)

On Finding Local Nash Equilibria (and Only Local Nash Equilibria) in Zero-Sum Games

3 January 2019
Eric V. Mazumdar
Sai Li
S. Shankar Sastry
ArXiv (abs)PDFHTML
Abstract

We propose local symplectic surgery, a two-timescale procedure for finding local Nash equilibria in two-player zero-sum games. We first show that previous gradient-based algorithms cannot guarantee convergence to local Nash equilibria due to the existence of non-Nash stationary points. By taking advantage of the differential structure of the game, we construct an algorithm for which the local Nash equilibria are the only attracting fixed points. We also show that the algorithm exhibits no oscillatory behaviors in neighborhoods of equilibria and show that it has the same per-iteration complexity as other recently proposed algorithms. We conclude by validating the algorithm on two numerical examples: a toy example with multiple Nash equilibria and a non-Nash equilibrium, and the training of a small generative adversarial network (GAN).

View on arXiv
Comments on this paper