ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.02001
18
2

Analogy-Based Preference Learning with Kernels

7 January 2019
Mohsen Ahmadi Fahandar
Eyke Hüllermeier
ArXiv (abs)PDFHTML
Abstract

Building on a specific formalization of analogical relationships of the form "A relates to B as C relates to D", we establish a connection between two important subfields of artificial intelligence, namely analogical reasoning and kernel-based machine learning. More specifically, we show that so-called analogical proportions are closely connected to kernel functions on pairs of objects. Based on this result, we introduce the analogy kernel, which can be seen as a measure of how strongly four objects are in analogical relationship. As an application, we consider the problem of object ranking in the realm of preference learning, for which we develop a new method based on support vector machines trained with the analogy kernel. Our first experimental results for data sets from different domains (sports, education, tourism, etc.) are promising and suggest that our approach is competitive to state-of-the-art algorithms in terms of predictive accuracy.

View on arXiv
Comments on this paper