ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.02062
93
15

Sensitivity analysis beyond linearity

20 December 2018
Manuele Leonelli
ArXiv (abs)PDFHTML
Abstract

A wide array of graphical models can be parametrised to have atomic probabilities represented by monomial functions. Such monomial structure has proven very useful when studying robustness under the assumption of a multilinear model where all monomial have either zero or one exponents. Robustness in probabilistic graphical models is usually investigated by varying some of the input probabilities and observing the effects of these on output probabilities of interest. Here the assumption of multilinearity is relaxed and a general approach for sensitivity analysis in non-multilinear models is presented. It is shown that in non-multilinear models sensitivity functions have a polynomial form, conversely to multilinear models where these are simply linear. The form of various divergences and distances under different covariation schemes is also formally derived. Proportional covariation is proven to be optimal in non-multilinear models under some specific choices of varied parameters. The methodology is illustrated throughout by an educational application.

View on arXiv
Comments on this paper