59
39
v1v2 (latest)

Gaussian processes with linear operator inequality constraints

Abstract

This paper presents an approach for constrained Gaussian Process (GP) regression where we assume that a set of linear transformations of the process are bounded. It is motivated by machine learning applications for high-consequence engineering systems, where this kind of information is often made available from phenomenological knowledge. We consider a GP ff over functions on XRn\mathcal{X} \subset \mathbb{R}^{n} taking values in R\mathbb{R}, where the process Lf\mathcal{L}f is still Gaussian when L\mathcal{L} is a linear operator. Our goal is to model ff under the constraint that realizations of Lf\mathcal{L}f are confined to a convex set of functions. In particular, we require that aLfba \leq \mathcal{L}f \leq b, given two functions aa and bb where a<ba < b pointwise. This formulation provides a consistent way of encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness, monotonicity or convexity. We adopt the approach of using a sufficiently dense set of virtual observation locations where the constraint is required to hold, and derive the exact posterior for a conjugate likelihood. The results needed for stable numerical implementation are derived, together with an efficient sampling scheme for estimating the posterior process.

View on arXiv
Comments on this paper