ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.04195
8
55

Integrating Learning and Reasoning with Deep Logic Models

14 January 2019
G. Marra
Francesco Giannini
Michelangelo Diligenti
Marco Gori
    NAI
ArXivPDFHTML
Abstract

Deep learning is very effective at jointly learning feature representations and classification models, especially when dealing with high dimensional input patterns. Probabilistic logic reasoning, on the other hand, is capable to take consistent and robust decisions in complex environments. The integration of deep learning and logic reasoning is still an open-research problem and it is considered to be the key for the development of real intelligent agents. This paper presents Deep Logic Models, which are deep graphical models integrating deep learning and logic reasoning both for learning and inference. Deep Logic Models create an end-to-end differentiable architecture, where deep learners are embedded into a network implementing a continuous relaxation of the logic knowledge. The learning process allows to jointly learn the weights of the deep learners and the meta-parameters controlling the high-level reasoning. The experimental results show that the proposed methodology overtakes the limitations of the other approaches that have been proposed to bridge deep learning and reasoning.

View on arXiv
Comments on this paper