Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking

Abstract
A decentralized Poisson multi-Bernoulli filter is proposed to track multiple vehicles using multiple high-resolution sensors. Independent filters estimate the vehicles' presence, state, and shape using a Gaussian process extent model; a decentralized filter is realized through fusion of the filters posterior densities. An efficient implementation is achieved by parametric state representation, utilization of single hypothesis tracks, and fusion of vehicle information based on a fusion mapping. Numerical results demonstrate the performance.
View on arXivComments on this paper