ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.06949
69
66
v1v2 (latest)

Differential Privacy for Power Grid Obfuscation

21 January 2019
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
ArXiv (abs)PDFHTML
Abstract

The availability of high-fidelity energy networks brings significant value to academic and commercial research. However, such releases also raise fundamental concerns related to privacy and security as they can reveal sensitive commercial information and expose system vulnerabilities. This paper investigates how to release power networks where the parameters of transmission lines and transformers are obfuscated. It does so by using the framework of Differential Privacy (DP), that provides strong privacy guarantees and has attracted significant attention in recent years. Unfortunately, simple DP mechanisms often result in AC-infeasible networks. To address these concerns, this paper presents a novel differential privacy mechanism that guarantees AC-feasibility and largely preserves the fidelity of the obfuscated network. Experimental results also show that the obfuscation significantly reduces the potential damage of an attacker exploiting the release of the dataset.

View on arXiv
Comments on this paper