ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07439
11
1

Multiple Graph Adversarial Learning

22 January 2019
Bo Jiang
Ziyan Zhang
Jin Tang
Bin Luo
ArXivPDFHTML
Abstract

Recently, Graph Convolutional Networks (GCNs) have been widely studied for graph-structured data representation and learning. However, in many real applications, data are coming with multiple graphs, and it is non-trivial to adapt GCNs to deal with data representation with multiple graph structures. One main challenge for multi-graph representation is how to exploit both structure information of each individual graph and correlation information across multiple graphs simultaneously. In this paper, we propose a novel Multiple Graph Adversarial Learning (MGAL) framework for multi-graph representation and learning. MGAL aims to learn an optimal structure-invariant and consistent representation for multiple graphs in a common subspace via a novel adversarial learning framework, which thus incorporates both structure information of intra-graph and correlation information of inter-graphs simultaneously. Based on MGAL, we then provide a unified network for semi-supervised learning task. Promising experimental results demonstrate the effectiveness of MGAL model.

View on arXiv
Comments on this paper