ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08014
8
198

Sentiment and Sarcasm Classification with Multitask Learning

23 January 2019
Navonil Majumder
Soujanya Poria
Haiyun Peng
Niyati Chhaya
Erik Cambria
Alexander Gelbukh
ArXivPDFHTML
Abstract

Sentiment classification and sarcasm detection are both important natural language processing (NLP) tasks. Sentiment is always coupled with sarcasm where intensive emotion is expressed. Nevertheless, most literature considers them as two separate tasks. We argue that knowledge in sarcasm detection can also be beneficial to sentiment classification and vice versa. We show that these two tasks are correlated, and present a multi-task learning-based framework using a deep neural network that models this correlation to improve the performance of both tasks in a multi-task learning setting. Our method outperforms the state of the art by 3-4% in the benchmark dataset.

View on arXiv
Comments on this paper