ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09206
11
4

Kernel-Guided Training of Implicit Generative Models with Stability Guarantees

26 January 2019
Arash Mehrjou
Wittawat Jitkrittum
Krikamol Muandet
Bernhard Schölkopf
    GAN
ArXivPDFHTML
Abstract

Modern implicit generative models such as generative adversarial networks (GANs) are generally known to suffer from issues such as instability, uninterpretability, and difficulty in assessing their performance. If we see these implicit models as dynamical systems, some of these issues are caused by being unable to control their behavior in a meaningful way during the course of training. In this work, we propose a theoretically grounded method to guide the training trajectories of GANs by augmenting the GAN loss function with a kernel-based regularization term that controls local and global discrepancies between the model and true distributions. This control signal allows us to inject prior knowledge into the model. We provide theoretical guarantees on the stability of the resulting dynamical system and demonstrate different aspects of it via a wide range of experiments.

View on arXiv
Comments on this paper