ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.11311
37
4
v1v2v3v4 (latest)

New Tricks for Estimating Gradients of Expectations

31 January 2019
Christian J. Walder
Paul Roussel
Richard Nock
Cheng Soon Ong
Masashi Sugiyama
ArXiv (abs)PDFHTML
Abstract

We derive a family of Monte Carlo estimators for gradients of expectations which is related to the log-derivative trick, but involves pairwise interactions between samples. The first of these comes from either a) introducing and approximating an integral representation based on the fundamental theorem of calculus, or b) applying the reparameterisation trick to an implicit parameterisation under infinitesimal perturbation of the parameters. From the former perspective we generalise to a reproducing kernel Hilbert space representation, giving rise to locality parameter in the pairwise interactions mentioned above. The resulting estimators are unbiased and shown to offer an independent component of useful information in comparison with the log-derivative estimator. Promising analytical and numerical examples confirm the intuitions behind the new estimators.

View on arXiv
Comments on this paper