ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00247
23
104

Sharp Analysis for Nonconvex SGD Escaping from Saddle Points

1 February 2019
Cong Fang
Zhouchen Lin
Tong Zhang
ArXivPDFHTML
Abstract

In this paper, we give a sharp analysis for Stochastic Gradient Descent (SGD) and prove that SGD is able to efficiently escape from saddle points and find an (ϵ,O(ϵ0.5))(\epsilon, O(\epsilon^{0.5}))(ϵ,O(ϵ0.5))-approximate second-order stationary point in O~(ϵ−3.5)\tilde{O}(\epsilon^{-3.5})O~(ϵ−3.5) stochastic gradient computations for generic nonconvex optimization problems, when the objective function satisfies gradient-Lipschitz, Hessian-Lipschitz, and dispersive noise assumptions. This result subverts the classical belief that SGD requires at least O(ϵ−4)O(\epsilon^{-4})O(ϵ−4) stochastic gradient computations for obtaining an (ϵ,O(ϵ0.5))(\epsilon,O(\epsilon^{0.5}))(ϵ,O(ϵ0.5))-approximate second-order stationary point. Such SGD rate matches, up to a polylogarithmic factor of problem-dependent parameters, the rate of most accelerated nonconvex stochastic optimization algorithms that adopt additional techniques, such as Nesterov's momentum acceleration, negative curvature search, as well as quadratic and cubic regularization tricks. Our novel analysis gives new insights into nonconvex SGD and can be potentially generalized to a broad class of stochastic optimization algorithms.

View on arXiv
Comments on this paper