ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02827
81
146
v1v2 (latest)

Modeling and Control of Soft Robots Using the Koopman Operator and Model Predictive Control

7 February 2019
Daniel Bruder
B. Gillespie
C. D. Remy
Ram Vasudevan
ArXiv (abs)PDFHTML
Abstract

Controlling soft robots with precision is a challenge due in large part to the difficulty of constructing models that are amenable to model-based control design techniques. Koopman Operator Theory offers a way to construct explicit linear dynamical models of soft robots and to control them using established model-based linear control methods. This method is data-driven, yet unlike other data-driven models such as neural networks, it yields an explicit control-oriented linear model rather than just a "black-box" input-output mapping. This work describes this Koopman-based system identification method and its application to model predictive controller design. A model and MPC controller of a pneumatic soft robot arm was constructed via the method, and its performance was evaluated over several trajectory following tasks in the real-world. On all of the tasks, the Koopman-based MPC controller outperformed a benchmark MPC controller based on a linear state-space model of the same system.

View on arXiv
Comments on this paper