ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04335
84
48
v1v2v3 (latest)

Hyperbolic Disk Embeddings for Directed Acyclic Graphs

12 February 2019
Ryota Suzuki
Ryusuke Takahama
Shunzo Onoda
ArXiv (abs)PDFHTML
Abstract

Obtaining continuous representations of structural data such as directed acyclic graphs (DAGs) has gained attention in machine learning and artificial intelligence. However, embedding complex DAGs in which both ancestors and descendants of nodes are exponentially increasing is difficult. Tackling in this problem, we develop Disk Embeddings, which is a framework for embedding DAGs into quasi-metric spaces. Existing state-of-the-art methods, Order Embeddings and Hyperbolic Entailment Cones, are instances of Disk Embedding in Euclidean space and spheres respectively. Furthermore, we propose a novel method Hyperbolic Disk Embeddings to handle exponential growth of relations. The results of our experiments show that our Disk Embedding models outperform existing methods especially in complex DAGs other than trees.

View on arXiv
Comments on this paper