ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04856
14
7

Person Re-identification in Videos by Analyzing Spatio-Temporal Tubes

13 February 2019
Sk. Arif Ahmed
D. P. Dogra
Heeseung Choi
Seungho Chae
Ig-Jae Kim
ArXivPDFHTML
Abstract

Typical person re-identification frameworks search for k best matches in a gallery of images that are often collected in varying conditions. The gallery may contain image sequences when re-identification is done on videos. However, such a process is time consuming as re-identification has to be carried out multiple times. In this paper, we extract spatio-temporal sequences of frames (referred to as tubes) of moving persons and apply a multi-stage processing to match a given query tube with a gallery of stored tubes recorded through other cameras. Initially, we apply a binary classifier to remove noisy images from the input query tube. In the next step, we use a key-pose detection-based query minimization. This reduces the length of the query tube by removing redundant frames. Finally, a 3-stage hierarchical re-identification framework is used to rank the output tubes as per the matching scores. Experiments with publicly available video re-identification datasets reveal that our framework is better than state-of-the-art methods. It ranks the tubes with an increased CMC accuracy of 6-8% across multiple datasets. Also, our method significantly reduces the number of false positives. A new video re-identification dataset, named Tube-based Reidentification Video Dataset (TRiViD), has been prepared with an aim to help the re-identification research community

View on arXiv
Comments on this paper