ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.05659
41
2
v1v2 (latest)

Massively Parallel Benders Decomposition for Correlation Clustering

15 February 2019
Margret Keuper
Jovita Lukasik
Maneesh Kumar Singh
Julian Yarkony
ArXiv (abs)PDFHTML
Abstract

We tackle the problem of graph partitioning for image segmentation using correlation clustering (CC), which we treat as an integer linear program (ILP). We reformulate optimization in the ILP so as to admit efficient optimization via Benders decomposition, a classic technique from operations research. Our Benders decomposition formulation has many subproblems, each associated with a node in the CC instance's graph, which are solved in parallel. Each Benders subproblem enforces the cycle inequalities corresponding to the negative weight edges attached to its corresponding node in the CC instance. We generate Magnanti-Wong Benders rows in addition to standard Benders rows, to accelerate optimization. Our Benders decomposition approach provides a promising new avenue to accelerate optimization for CC, and allows for massive parallelization.

View on arXiv
Comments on this paper