ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.08708
19
58

Distributionally Robust Reinforcement Learning

23 February 2019
E. Smirnova
Elvis Dohmatob
Jérémie Mary
    OffRL
ArXivPDFHTML
Abstract

Real-world applications require RL algorithms to act safely. During learning process, it is likely that the agent executes sub-optimal actions that may lead to unsafe/poor states of the system. Exploration is particularly brittle in high-dimensional state/action space due to increased number of low-performing actions. In this work, we consider risk-averse exploration in approximate RL setting. To ensure safety during learning, we propose the distributionally robust policy iteration scheme that provides lower bound guarantee on state-values. Our approach induces a dynamic level of risk to prevent poor decisions and yet preserves the convergence to the optimal policy. Our formulation results in a efficient algorithm that accounts for a simple re-weighting of policy actions in the standard policy iteration scheme. We extend our approach to continuous state/action space and present a practical algorithm, distributionally robust soft actor-critic, that implements a different exploration strategy: it acts conservatively at short-term and it explores optimistically in a long-run. We provide promising experimental results on continuous control tasks.

View on arXiv
Comments on this paper