ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.09615
53
20
v1v2v3v4 (latest)

Binscatter Regressions

25 February 2019
M. D. Cattaneo
Richard K. Crump
M. Farrell
Yingjie Feng
ArXiv (abs)PDFHTML
Abstract

We introduce the \texttt{Stata} package \textsf{Binsreg}, which implements the binscatter methods developed in \citet*{Cattaneo-Crump-Farrell-Feng_2021_Binscatter}. The package includes seven commands: \texttt{binsreg}, \texttt{binslogit}, \texttt{binsprobit}, \texttt{binsqreg}, \texttt{binstest}, \texttt{binspwc}, and \texttt{binsregselect}. The first four commands implement point estimation and uncertainly quantification (confidence intervals and confidence bands) for canonical and extended least squares binscatter regression (\texttt{binsreg}) as well as generalized nonlinear binscatter regression (\texttt{binslogit} for Logit regression, \texttt{binsprobit} for Probit regression, \texttt{binsqreg} for quantile regression). These commands also offer binned scatter plots, allowing for one- and multi-sample settings. The next two commands focus on pointwise and uniform inference: \texttt{binstest} implements hypothesis testing procedures for parametric specification and for nonparametric shape restrictions of the unknown regression function, while \texttt{binspwc} implements multi-group pairwise statistical comparisons. These two commands cover both least squares as well as generalized nonlinear binscatter methods. All our methods allow for multi-sample analysis, which is useful when studying treatment effect heterogeneity in randomized and observational studies. Finally, the command \texttt{binsregselect} implements data-driven number of bins selectors for binscatter methods using either quantile-spaced or evenly-spaced binning/partitioning. All the commands allow for covariate adjustment, smoothness restrictions, weighting and clustering, among many other features. Companion \texttt{Python} and \texttt{R} packages with similar syntax and capabilities are also available.

View on arXiv
Comments on this paper