ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.09962
19
11

Epileptic seizure classification using statistical sampling and a novel feature selection algorithm

25 February 2019
M. Mursalin
S. Islam
Md Kislu Noman
Adel Ali Al-Jumaily
ArXivPDFHTML
Abstract

Epilepsy is a well-known neuronal disorder that can be identified by interpretation of the electroencephalogram (EEG) signal. Usually, the length of an EEG signal is quite long which is challenging to interpret manually. In this work, we propose an automated epileptic seizure detection method by applying a two-step minimization technique: first, we reduce the data points using a statistical sampling technique and then, we minimize the number of features using our novel feature selection algorithm. We then apply different machine learning algorithms for performance measurement of the proposed feature selection algorithm. The experimental results outperform some of the state-of-the-art methods for seizure detection using the reduced data points and the least number of features.

View on arXiv
Comments on this paper