ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00133
19
5

Video Extrapolation with an Invertible Linear Embedding

1 March 2019
Robert Pottorff
Jared Nielsen
David Wingate
ArXivPDFHTML
Abstract

We predict future video frames from complex dynamic scenes, using an invertible neural network as the encoder of a nonlinear dynamic system with latent linear state evolution. Our invertible linear embedding (ILE) demonstrates successful learning, prediction and latent state inference. In contrast to other approaches, ILE does not use any explicit reconstruction loss or simplistic pixel-space assumptions. Instead, it leverages invertibility to optimize the likelihood of image sequences exactly, albeit indirectly. Comparison with a state-of-the-art method demonstrates the viability of our approach.

View on arXiv
Comments on this paper