ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02504
51
81
v1v2 (latest)

Spiking Neural Network on Neuromorphic Hardware for Energy-Efficient Unidimensional SLAM

6 March 2019
Guangzhi Tang
Arpit Shah
Konstantinos Michmizos
ArXiv (abs)PDFHTML
Abstract

Energy-efficient simultaneous localization and mapping (SLAM) is crucial for mobile robots exploring unknown environments. The mammalian brain solves SLAM via a network of specialized neurons, exhibiting asynchronous computations and event-based communications, with very low energy consumption. We propose a brain-inspired spiking neural network (SNN) architecture that solves the unidimensional SLAM by introducing spike-based reference frame transformation, visual likelihood computation, and Bayesian inference. We integrated our neuromorphic algorithm to Intel's Loihi neuromorphic processor, a non-Von Neumann hardware that mimics the brain's computing paradigms. We performed comparative analyses for accuracy and energy-efficiency between our neuromorphic approach and the GMapping algorithm, which is widely used in small environments. Our Loihi-based SNN architecture consumes 100 times less energy than GMapping run on a CPU while having comparable accuracy in head direction localization and map-generation. These results pave the way for scaling our approach towards active-SLAM alternative solutions for Loihi-controlled autonomous robots.

View on arXiv
Comments on this paper