ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02831
11
7

Predicting Research Trends From Arxiv

7 March 2019
Steffen Eger
Chao Li
Florian Netzer
Iryna Gurevych
ArXivPDFHTML
Abstract

We perform trend detection on two datasets of Arxiv papers, derived from its machine learning (cs.LG) and natural language processing (cs.CL) categories. Our approach is bottom-up: we first rank papers by their normalized citation counts, then group top-ranked papers into different categories based on the tasks that they pursue and the methods they use. We then analyze these resulting topics. We find that the dominating paradigm in cs.CL revolves around natural language generation problems and those in cs.LG revolve around reinforcement learning and adversarial principles. By extrapolation, we predict that these topics will remain lead problems/approaches in their fields in the short- and mid-term.

View on arXiv
Comments on this paper