ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.03986
16
0
v1v2 (latest)

Scalable Grouped Gaussian Processes via Direct Cholesky Functional Representations

10 March 2019
A. Dahl
Edwin V. Bonilla
ArXiv (abs)PDFHTML
Abstract

We consider multi-task regression models where observations are assumed to be a linear combination of several latent node and weight functions, all drawn from Gaussian process (GP) priors that allow nonzero covariance between grouped latent functions. We show that when these grouped functions are conditionally independent given a group-dependent pivot, it is possible to parameterize the prior through sparse Cholesky factors directly, hence avoiding their computation during inference. Furthermore, we establish that kernels that are multiplicatively separable over input points give rise to such sparse parameterizations naturally without any additional assumptions. Finally, we extend the use of these sparse structures to approximate posteriors within variational inference, further improving scalability on the number of functions. We test our approach on multi-task datasets concerning distributed solar forecasting and show that it outperforms several multi-task GP baselines and that our sparse specifications achieve the same or better accuracy than non-sparse counterparts.

View on arXiv
Comments on this paper