ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.04197
18
575

Structured Knowledge Distillation for Dense Prediction

11 March 2019
Yifan Liu
Chris Liu
Jingdong Wang
Zhenbo Luo
ArXivPDFHTML
Abstract

In this work, we consider transferring the structure information from large networks to compact ones for dense prediction tasks in computer vision. Previous knowledge distillation strategies used for dense prediction tasks often directly borrow the distillation scheme for image classification and perform knowledge distillation for each pixel separately, leading to sub-optimal performance. Here we propose to distill structured knowledge from large networks to compact networks, taking into account the fact that dense prediction is a structured prediction problem. Specifically, we study two structured distillation schemes: i) pair-wise distillation that distills the pair-wise similarities by building a static graph; and ii) holistic distillation that uses adversarial training to distill holistic knowledge. The effectiveness of our knowledge distillation approaches is demonstrated by experiments on three dense prediction tasks: semantic segmentation, depth estimation and object detection. Code is available at: https://git.io/StructKD

View on arXiv
Comments on this paper