ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.07822
6
3

A semi-supervised deep learning algorithm for abnormal EEG identification

19 March 2019
Subhrajit Roy
Kiran Kate
Martin Hirzel
ArXivPDFHTML
Abstract

Systems that can automatically analyze EEG signals can aid neurologists by reducing heavy workload and delays. However, such systems need to be first trained using a labeled dataset. While large corpuses of EEG data exist, a fraction of them are labeled. Hand-labeling data increases workload for the very neurologists we try to aid. This paper proposes a semi-supervised learning workflow that can not only extract meaningful information from large unlabeled EEG datasets but also make predictions with minimal supervision, using labeled datasets as small as 5 examples.

View on arXiv
Comments on this paper