ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08322
24
14
v1v2 (latest)

A Learning Framework for Distribution-Based Game-Theoretic Solution Concepts

20 March 2019
Tushant Jha
Yair Zick
ArXiv (abs)PDFHTML
Abstract

The past few years have seen several works on learning economic solutions from data; these include optimal auction design, function optimization, stable payoffs in cooperative games and more. In this work, we provide a unified learning-theoretic methodology for modeling such problems, and establish tools for determining whether a given economic solution concept can be learned from data. Our learning theoretic framework generalizes a notion of function space dimension -- the graph dimension -- adapting it to the solution concept learning domain. We identify sufficient conditions for the PAC learnability of solution concepts, and show that results in existing works can be immediately derived using our methodology. Finally, we apply our methods in other economic domains, yielding a novel notion of PAC competitive equilibrium and PAC Condorcet winners.

View on arXiv
Comments on this paper