ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08456
20
4

On Class Imbalance and Background Filtering in Visual Relationship Detection

20 March 2019
Alessio Sarullo
Tingting Mu
ArXivPDFHTML
Abstract

In this paper we investigate the problems of class imbalance and irrelevant relationships in Visual Relationship Detection (VRD). State-of-the-art deep VRD models still struggle to predict uncommon classes, limiting their applicability. Moreover, many methods are incapable of properly filtering out background relationships while predicting relevant ones. Although these problems are very apparent, they have both been overlooked so far. We analyse why this is the case and propose modifications to both model and training to alleviate the aforementioned issues, as well as suggesting new measures to complement existing ones and give a more holistic picture of the efficacy of a model.

View on arXiv
Comments on this paper