ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08708
35
12
v1v2v3 (latest)

Accelerating Gradient Boosting Machine

20 March 2019
Haihao Lu
Sai Praneeth Karimireddy
Natalia Ponomareva
Vahab Mirrokni
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Gradient Boosting Machine (GBM) is an extremely powerful supervised learning algorithm that is widely used in practice. GBM routinely features as a leading algorithm in machine learning competitions such as Kaggle and the KDDCup. In this work, we propose Accelerated Gradient Boosting Machine (AGBM) by incorporating Nesterov's acceleration techniques into the design of GBM. The difficulty in accelerating GBM lies in the fact that weak (inexact) learners are commonly used, and therefore the errors can accumulate in the momentum term. To overcome it, we design a "corrected pseudo residual" and fit best weak learner to this corrected pseudo residual, in order to perform the z-update. Thus, we are able to derive novel computational guarantees for AGBM. This is the first GBM type of algorithm with theoretically-justified accelerated convergence rate. Finally we demonstrate with a number of numerical experiments the effectiveness of AGBM over conventional GBM in obtaining a model with good training and/or testing data fidelity.

View on arXiv
Comments on this paper