ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.12363
13
55

CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor

29 March 2019
Xiaohui Zhao
Endi Niu
Zhuo Wu
Xiaoguang Wang
ArXivPDFHTML
Abstract

Extracting key information from documents, such as receipts or invoices, and preserving the interested texts to structured data is crucial in the document-intensive streamline processes of office automation in areas that includes but not limited to accounting, financial, and taxation areas. To avoid designing expert rules for each specific type of document, some published works attempt to tackle the problem by learning a model to explore the semantic context in text sequences based on the Named Entity Recognition (NER) method in the NLP field. In this paper, we propose to harness the effective information from both semantic meaning and spatial distribution of texts in documents. Specifically, our proposed model, Convolutional Universal Text Information Extractor (CUTIE), applies convolutional neural networks on gridded texts where texts are embedded as features with semantical connotations. We further explore the effect of employing different structures of convolutional neural network and propose a fast and portable structure. We demonstrate the effectiveness of the proposed method on a dataset with up to 4,4844,4844,484 labelled receipts, without any pre-training or post-processing, achieving state of the art performance that is much better than the NER based methods in terms of either speed and accuracy. Experimental results also demonstrate that the proposed CUTIE model being able to achieve good performance with a much smaller amount of training data.

View on arXiv
Comments on this paper