ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.12488
10
8

Consistency and Asymptotic Normality of Stochastic Block Models Estimators from Sampled Data

28 March 2019
M. Mariadassou
Timothée Tabouy
ArXivPDFHTML
Abstract

Statistical analysis of network is an active research area and the literature counts a lot of papers concerned with network models and statistical analysis of networks. However, very few papers deal with missing data in network analysis and we reckon that, in practice, networks are often observed with missing values. In this paper we focus on the Stochastic Block Model with valued edges and consider a MCAR setting by assuming that every dyad (pair of nodes) is sampled identically and independently of the others with probability ρ>0\rho > 0ρ>0. We prove that maximum likelihood estimators and its variational approximations are consistent and asymptotically normal in the presence of missing data as soon as the sampling probability ρ\rhoρ satisfies ρ≫log⁡(n)/n\rho\gg\log(n)/nρ≫log(n)/n.

View on arXiv
Comments on this paper