ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.01033
14
26

Multitask Soft Option Learning

1 April 2019
Maximilian Igl
Andrew Gambardella
Jinke He
Nantas Nardelli
N. Siddharth
Wendelin Bohmer
Shimon Whiteson
ArXivPDFHTML
Abstract

We present Multitask Soft Option Learning(MSOL), a hierarchical multitask framework based on Planning as Inference. MSOL extends the concept of options, using separate variational posteriors for each task, regularized by a shared prior. This ''soft'' version of options avoids several instabilities during training in a multitask setting, and provides a natural way to learn both intra-option policies and their terminations. Furthermore, it allows fine-tuning of options for new tasks without forgetting their learned policies, leading to faster training without reducing the expressiveness of the hierarchical policy. We demonstrate empirically that MSOL significantly outperforms both hierarchical and flat transfer-learning baselines.

View on arXiv
Comments on this paper