ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.01340
13
58

Unsupervised training of a deep clustering model for multichannel blind source separation

2 April 2019
Lukas Drude
Daniel Hasenklever
Reinhold Häb-Umbach
    SSL
ArXivPDFHTML
Abstract

We propose a training scheme to train neural network-based source separation algorithms from scratch when parallel clean data is unavailable. In particular, we demonstrate that an unsupervised spatial clustering algorithm is sufficient to guide the training of a deep clustering system. We argue that previous work on deep clustering requires strong supervision and elaborate on why this is a limitation. We demonstrate that (a) the single-channel deep clustering system trained according to the proposed scheme alone is able to achieve a similar performance as the multi-channel teacher in terms of word error rates and (b) initializing the spatial clustering approach with the deep clustering result yields a relative word error rate reduction of 26 % over the unsupervised teacher.

View on arXiv
Comments on this paper