ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.01883
11
11

Rinascimento: Optimising Statistical Forward Planning Agents for Playing Splendor

3 April 2019
Ivan Bravi
Simon Lucas
Diego Perez-Liebana
Jialin Liu
ArXivPDFHTML
Abstract

Game-based benchmarks have been playing an essential role in the development of Artificial Intelligence (AI) techniques. Providing diverse challenges is crucial to push research toward innovation and understanding in modern techniques. Rinascimento provides a parameterised partially-observable multiplayer card-based board game, these parameters can easily modify the rules, objectives and items in the game. We describe the framework in all its features and the game-playing challenge providing baseline game-playing AIs and analysis of their skills. We reserve to agents' hyper-parameter tuning a central role in the experiments highlighting how it can heavily influence the performance. The base-line agents contain several additional contribution to Statistical Forward Planning algorithms.

View on arXiv
Comments on this paper