11
12

Extracting Tables from Documents using Conditional Generative Adversarial Networks and Genetic Algorithms

Abstract

Extracting information from tables in documents presents a significant challenge in many industries and in academic research. Existing methods which take a bottom-up approach of integrating lines into cells and rows or columns neglect the available prior information relating to table structure. Our proposed method takes a top-down approach, first using a generative adversarial network to map a table image into a standardised `skeleton' table form denoting the approximate row and column borders without table content, then fitting renderings of candidate latent table structures to the skeleton structure using a distance measure optimised by a genetic algorithm.

View on arXiv
Comments on this paper