ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.04326
14
121

A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics

8 April 2019
E. Weinan
Chao Ma
Lei Wu
    MLT
ArXivPDFHTML
Abstract

A fairly comprehensive analysis is presented for the gradient descent dynamics for training two-layer neural network models in the situation when the parameters in both layers are updated. General initialization schemes as well as general regimes for the network width and training data size are considered. In the over-parametrized regime, it is shown that gradient descent dynamics can achieve zero training loss exponentially fast regardless of the quality of the labels. In addition, it is proved that throughout the training process the functions represented by the neural network model are uniformly close to that of a kernel method. For general values of the network width and training data size, sharp estimates of the generalization error is established for target functions in the appropriate reproducing kernel Hilbert space.

View on arXiv
Comments on this paper