ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.06097
188
81
v1v2 (latest)

Evaluating Robustness of Deep Image Super-Resolution against Adversarial Attacks

12 April 2019
Jun-Ho Choi
Huan Zhang
Jun-Hyuk Kim
Cho-Jui Hsieh
Jong-Seok Lee
    AAMLSupR
ArXiv (abs)PDFHTML
Abstract

Single-image super-resolution aims to generate a high-resolution version of a low-resolution image, which serves as an essential component in many computer vision applications. This paper investigates the robustness of deep learning-based super-resolution methods against adversarial attacks, which can significantly deteriorate the super-resolved images without noticeable distortion in the attacked low-resolution images. It is demonstrated that state-of-the-art deep super-resolution methods are highly vulnerable to adversarial attacks. Different levels of robustness of different methods are analyzed theoretically and experimentally. We also present analysis on transferability of attacks, and feasibility of targeted attacks and universal attacks.

View on arXiv
Comments on this paper