ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.06513
19
4
v1v2 (latest)

An Integrated Autoencoder-Based Filter for Sparse Big Data

13 April 2019
Baogui Xin
Wei Peng
ArXiv (abs)PDFHTML
Abstract

We propose a novel filter for sparse big data, called an integrated autoencoder (IAE), which utilizes auxiliary information to mitigate data sparsity. The proposed model achieves an appropriate balance between prediction accuracy, convergence speed, and complexity. We implement experiments on a GPS trajectory dataset, and the results demonstrate that the IAE is more accurate and robust than some state-of-the-art methods.

View on arXiv
Comments on this paper