ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.06952
15
4

LeanResNet: A Low-cost Yet Effective Convolutional Residual Networks

15 April 2019
Jonathan Ephrath
Lars Ruthotto
E. Haber
Eran Treister
ArXivPDFHTML
Abstract

Convolutional Neural Networks (CNNs) filter the input data using spatial convolution operators with compact stencils. Commonly, the convolution operators couple features from all channels, which leads to immense computational cost in the training of and prediction with CNNs. To improve the efficiency of CNNs, we introduce lean convolution operators that reduce the number of parameters and computational complexity, and can be used in a wide range of existing CNNs. Here, we exemplify their use in residual networks (ResNets), which have been very reliable for a few years now and analyzed intensively. In our experiments on three image classification problems, the proposed LeanResNet yields results that are comparable to other recently proposed reduced architectures using similar number of parameters.

View on arXiv
Comments on this paper