ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07637
11
12

Learning a Local Symmetry with Neural-Networks

16 April 2019
A. Decelle
V. Martín-Mayor
Beatriz Seoane
ArXivPDFHTML
Abstract

We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns : the gauge symmetry Z 2 . This symmetry is present in physical problems from topological transitions to QCD, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational complexity.

View on arXiv
Comments on this paper