46
13

Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates

Abstract

We analyze the performance of the 2-rate (1+λ)(1+\lambda) Evolutionary Algorithm (EA) with self-adjusting mutation rate control, its 3-rate counterpart, and a (1+λ)(1+\lambda)~EA variant using multiplicative update rules on the OneMax problem. We compare their efficiency for offspring population sizes ranging up to λ=3,200\lambda=3,200 and problem sizes up to n=100,000n=100,000. Our empirical results show that the ranking of the algorithms is very consistent across all tested dimensions, but strongly depends on the population size. While for small values of λ\lambda the 2-rate EA performs best, the multiplicative updates become superior for starting for some threshold value of λ\lambda between 50 and 100. Interestingly, for population sizes around 50, the (1+λ)(1+\lambda)~EA with static mutation rates performs on par with the best of the self-adjusting algorithms. We also consider how the lower bound pminp_{\min} for the mutation rate influences the efficiency of the algorithms. We observe that for the 2-rate EA and the EA with multiplicative update rules the more generous bound pmin=1/n2p_{\min}=1/n^2 gives better results than pmin=1/np_{\min}=1/n when λ\lambda is small. For both algorithms the situation reverses for large~λ\lambda.

View on arXiv
Comments on this paper