ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.08084
48
20
v1v2v3v4 (latest)

General Purpose (GenP) Bioimage Ensemble of Handcrafted and Learned Features with Data Augmentation

17 April 2019
L. Nanni
S. Brahnam
S. Ghidoni
Gianluca Maguolo
ArXiv (abs)PDFHTML
Abstract

Bioimage classification plays a crucial role in many biological problems. In this work, we present a new General Purpose (GenP) ensemble that boosts performance by combining local features, dense sampling features, and deep learning approaches. First, we introduce three new methods for data augmentation based on PCA/DCT; second, we show that different data augmentation approaches can boost the performance of an ensemble of CNNs; and, finally, we propose a set of handcrafted/learned descriptors that are highly generalizable. Each handcrafted descriptor is used to train a different Support Vector Machine (SVM), and the different SVMs are combined with the ensemble of CNNs. Our method is evaluated on a diverse set of bioimage classification problems. Results demonstrate that the proposed GenP bioimage ensemble obtains state-of-the-art performance without any ad-hoc dataset tuning of parameters (thus avoiding the risk of overfitting/overtraining).

View on arXiv
Comments on this paper