ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.09106
16
25

Automated Segmentation of Pulmonary Lobes using Coordination-Guided Deep Neural Networks

19 April 2019
Wenjia Wang
Junxuan Chen
Jie Zhao
Ying Chi
Xuansong Xie
Li Zhang
Xiansheng Hua
ArXivPDFHTML
Abstract

The identification of pulmonary lobes is of great importance in disease diagnosis and treatment. A few lung diseases have regional disorders at lobar level. Thus, an accurate segmentation of pulmonary lobes is necessary. In this work, we propose an automated segmentation of pulmonary lobes using coordination-guided deep neural networks from chest CT images. We first employ an automated lung segmentation to extract the lung area from CT image, then exploit volumetric convolutional neural network (V-net) for segmenting the pulmonary lobes. To reduce the misclassification of different lobes, we therefore adopt coordination-guided convolutional layers (CoordConvs) that generate additional feature maps of the positional information of pulmonary lobes. The proposed model is trained and evaluated on a few publicly available datasets and has achieved the state-of-the-art accuracy with a mean Dice coefficient index of 0.947 ±\pm± 0.044.

View on arXiv
Comments on this paper