ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.09472
19
6

ChoiceNet: CNN learning through choice of multiple feature map representations

20 April 2019
Farshid Rayhan
Aphrodite Galata
Tim Cootes
    SSeg
ArXivPDFHTML
Abstract

We introduce a new architecture called ChoiceNet where each layer of the network is highly connected with skip connections and channelwise concatenations. This enables the network to alleviate the problem of vanishing gradients, reduces the number of parameters without sacrificing performance, and encourages feature reuse. We evaluate our proposed architecture on three benchmark datasets for object recognition tasks (ImageNet, CIFAR- 10, CIFAR-100, SVHN) and on a semantic segmentation dataset (CamVid).

View on arXiv
Comments on this paper