ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.10161
11
22

A Novel Multi-layer Framework for Tiny Obstacle Discovery

23 April 2019
Feng Xue
Anlong Ming
Menghan Zhou
Yu Zhou
ArXivPDFHTML
Abstract

For tiny obstacle discovery in a monocular image, edge is a fundamental visual element. Nevertheless, because of various reasons, e.g., noise and similar color distribution with background, it is still difficult to detect the edges of tiny obstacles at long distance. In this paper, we propose an obstacle-aware discovery method to recover the missing contours of these obstacles, which helps to obtain obstacle proposals as much as possible. First, by using visual cues in monocular images, several multi-layer regions are elaborately inferred to reveal the distances from the camera. Second, several novel obstacle-aware occlusion edge maps are constructed to well capture the contours of tiny obstacles, which combines cues from each layer. Third, to ensure the existence of the tiny obstacle proposals, the maps from all layers are used for proposals extraction. Finally, based on these proposals containing tiny obstacles, a novel obstacle-aware regressor is proposed to generate an obstacle occupied probability map with high confidence. The convincing experimental results with comparisons on the Lost and Found dataset demonstrate the effectiveness of our approach, achieving around 9.5% improvement on the accuracy than FPHT and PHT, it even gets comparable performance to MergeNet. Moreover, our method outperforms the state-of-the-art algorithms and significantly improves the discovery ability for tiny obstacles at long distance.

View on arXiv
Comments on this paper