ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.11392
26
2

Continuous-Time Mean-Variance Portfolio Selection: A Reinforcement Learning Framework

25 April 2019
Haoran Wang
X. Zhou
ArXivPDFHTML
Abstract

We approach the continuous-time mean-variance (MV) portfolio selection with reinforcement learning (RL). The problem is to achieve the best tradeoff between exploration and exploitation, and is formulated as an entropy-regularized, relaxed stochastic control problem. We prove that the optimal feedback policy for this problem must be Gaussian, with time-decaying variance. We then establish connections between the entropy-regularized MV and the classical MV, including the solvability equivalence and the convergence as exploration weighting parameter decays to zero. Finally, we prove a policy improvement theorem, based on which we devise an implementable RL algorithm. We find that our algorithm outperforms both an adaptive control based method and a deep neural networks based algorithm by a large margin in our simulations.

View on arXiv
Comments on this paper