ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12767
34
6
v1v2v3v4 (latest)

Local non-Bayesian social learning with stubborn agents

29 April 2019
Daniel Vial
V. Subramanian
    FedML
ArXiv (abs)PDFHTML
Abstract

We study a social learning model in which agents iteratively update their beliefs about the true state of the world using private signals and the beliefs of other agents in a non-Bayesian manner. Some agents are stubborn, meaning they attempt to convince others of an erroneous true state (modeling fake news). We show that while agents learn the true state on short timescales, they "forget" it and believe the erroneous state to be true on longer timescales. Using these results, we devise strategies for seeding stubborn agents so as to disrupt learning, which outperform intuitive heuristics and give novel insights regarding vulnerabilities in social learning.

View on arXiv
Comments on this paper