ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00851
41
13

Lifting Vectorial Variational Problems: A Natural Formulation based on Geometric Measure Theory and Discrete Exterior Calculus

2 May 2019
Thomas Möllenhoff
Daniel Cremers
ArXiv (abs)PDFHTML
Abstract

Numerous tasks in imaging and vision can be formulated as variational problems over vector-valued maps. We approach the relaxation and convexification of such vectorial variational problems via a lifting to the space of currents. To that end, we recall that functionals with polyconvex Lagrangians can be reparametrized as convex one-homogeneous functionals on the graph of the function. This leads to an equivalent shape optimization problem over oriented surfaces in the product space of domain and codomain. A convex formulation is then obtained by relaxing the search space from oriented surfaces to more general currents. We propose a discretization of the resulting infinite-dimensional optimization problem using Whitney forms, which also generalizes recent "sublabel-accurate" multilabeling approaches.

View on arXiv
Comments on this paper